Biological, Mechanical and Aesthetic Evaluation of Abutment Materials Used in Dental Implants
Ulviye Seda Gül, Tayfun Bilgin
Türk Dişhekimliği Dergisi
Yıl: 2024 | Cilt: 27 | Sayı: 97 | Sayfa: 12-19

Özet

Dental implantlar, protetik diş tedavisinde öncelikli bir tedavi seçeneği haline gelmiştir. Bu nedenle tedavinin başarısını artırmak adına dental implantlar ve parçaları ile ilgili gelişmeler devam etmektedir. İmplant dayanakları, protetik yapıyı destekleyen ve implanta çeşitli bağlantı mekanizmaları ile bağlanan bir implant parçasıdır. Dayanakların yapıldığı materyallerin; tedavinin biyolojik, mekanik ve estetik başarısı üzerine etkileri olduğu düşünülmektedir. Günümüzde dayanak materyali olarak sıklıkla titanyum tercih edilir. Biyouyumlu ve dirençli bir materyal olan titanyumun çeşitli dezavantajları mevcuttur. Seramik ve polimer materyallerin ise çeşitli açılardan titanyuma alternatif olduğu düşünülür. Bu derlemenin amacı farklı dayanak materyallerini biyolojik, mekanik ve estetik açıdan kıyaslayarak doğru endikasyonda doğru dayanak seçimine yardımcı olmaktır.

Anahtar Kelimeler

Dental İmplant, Dayanak Materyalleri, Titanyum, Zirkonya, Peek

Abstract

Dental implants have become a primary treatment option in prosthetic dentistry. Thus, developments regarding dental implants and parts continue in order to increase the success of the treatment. Implant abutment is an implant part that supports the prosthetic structure and is connected to the implant by various attachment mechanisms. It is thought that the materials from which the abutments are made has varying effects on the biological, mechanical and aesthetic success of the treatment. Frequently, titanium is preferred as the abutment material. However; titanium, a biocompatible and resistant material, has several disadvantages. Ceramic and polymer materials are considered to be alternatives to titanium in various respects. The aim of this review is to help the selection of the right abutment in the right indication by comparing different abutment materials in terms of biological, mechanical and aesthetic.

Keywords

Dental Implant, Abutment Materials, Titanium, Zirconia, Peek

Referanslar | References

1) Misch CE. Generic root form terminology. İçinde: Misch CE, editör. Dental Implant Prosthetics St. Louis: Mosby; 2005. pp. 32-42.

2) Molina A, Sanz-Sánchez I, Martín C, Blanco J, Sanz M. The effect of one-time abutment placement on interproximal bone levels and peri-implant soft tissues: a prospective randomized clinical trial. Clin Oral Implants Res. 2017 Apr;28(4):443-452. doi: 10.1111/clr.12818. Epub 2016 Mar 25. PMID: 27016157.

3) Lops D, Stellini E, Sbricoli L, Cea N, Romeo E, Bressan E. Influence of abutment material on peri-implant soft tissues in anterior areas with thin gingival biotype: a multicentric prospective study. Clin Oral Implants Res. 2017 Oct;28(10):1263-1268. doi: 10.1111/clr.12952. Epub 2016 Oct 3. PMID: 27699895.

4) Tan PL, Dunne JT Jr. An esthetic comparison of a metal ceramic crown and cast metal abutment with an all-ceramic crown and zirconia abutment: a clinical report. J Prosthet Dent. 2004 Mar;91(3):215-8. doi: 10.1016/j.prosdent.2003.12.024. PMID: 15060488.

5) Martin WC, Pollini A, Morton D. The influence of restorative procedures on esthetic outcomes in implant dentistry: a systematic review. Int J Oral Maxillofac Implants. 2014;29 Suppl:142-54. doi: 10.11607/jomi.2014suppl.g3.1. PMID: 24660196.

6) Linkevicius T, Vaitelis J. The effect of zirconia or titanium as abutment material on soft peri-implant tissues: a systematic review and meta-analysis. Clin Oral Implants Res. 2015 Sep;26 Suppl 11:139-47. doi: 10.1111/clr.12631. Epub 2015 Jun 13. PMID: 26073346.

7) Linkevicius T, Apse P. Influence of abutment material on stability of peri-implant tissues: a systematic review. Int J Oral Maxillofac Implants. 2008 May-Jun;23(3):449-56. PMID: 18700367.

8) Cai H, Chen J, Li C, Wang J, Wan Q, Liang X. Quantitative discoloration assessment of peri-implant soft tissue around zirconia and other abutments with different colours: A systematic review and meta-analysis. J Dent. 2018 Mar;70:110-117. doi: 10.1016/j.jdent.2018.01.003. Epub 2018 Jan 19. PMID: 29371043.

9) Sailer I, Philipp A, Zembic A, Pjetursson BE, Hämmerle CH, Zwahlen M. A systematic review of the performance of ceramic and metal implant abutments supporting fixed implant reconstructions. Clin Oral Implants Res. 2009 Sep;20 Suppl 4:4-31. doi: 10.1111/j.1600-0501.2009.01787.x. PMID: 19663946.

10) Sanz-Sánchez I, Sanz-Martín I, Carrillo de Albornoz A, Figuero E, Sanz M. Biological effect of the abutment material on the stability of peri-implant marginal bone levels: A systematic review and meta-analysis. Clin Oral Implants Res. 2018 Oct;29 Suppl 18:124-144. doi: 10.1111/clr.13293. Epub 2018 Jun 15. PMID: 29907973.

11) Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. International dental journal. 1993;43 (3):245-53.

12) Truninger TC, Stawarczyk B, Leutert CR, Sailer TR, Hämmerle CH, Sailer I. Bending moments of zirconia and titanium abutments with internal and external implant-abutment connections after aging and chewing simulation. Clin Oral Implants Res. 2012 Jan;23(1):12-8. doi: 10.1111/j.1600-0501.2010.02141.x. Epub 2011 Mar 28. PMID: 21443610.

13) Mellado-Valero A, Muñoz AI, Pina VG, Sola-Ruiz MF. Electrochemical Behaviour and Galvanic Effects of Titanium Implants Coupled to Metallic Suprastructures in Artificial Saliva. Materials (Basel). 2018 Jan 22;11(1):171. doi: 10.3390/ma11010171. PMID: 29361767; PMCID: PMC5793669.

14) Hermann JS, Cochran DL, Hermann JS, Buser D, Schenk RK, Schoolfield JD. Biologic Width around one‐and two‐piece titanium implants: A histometric evaluation of unloaded nonsubmerged and submerged implants in the canine mandible. Clinical oral implants research. 2001;12 (6):559-71.

15) Lekholm U, Gunne J, Henry P, Higuchi K, Lindén U, Bergström C, et al. Survival of the Brånemark implant in partially edentulous jaws: a 10-year prospective multicenter study. International Journal of Oral and Maxillofacial Implants. 1999;14 (5):639-45.

16)Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent  Mater2008;24:289-98

17)Christel P, Meunier A, Dorlot JM, Crolet JM, et al.Biomechanical compatibility  and design of ceramic implants for orthopedic surgery. Bioceram-ics:  material  caracteristics  versus  in  vivobehavior.  Ann  NY  Acad  Sci  1988;523:  234-5

18)Goff  JP,  Hayes  W,  Hull  S,  Hutchings  MT,Clausen KN. Defect  structure of yttria-stabilizedzirconia and its influence on the ionic conductiv-ity  at  elevated  temperatures.  Phys Rev B1999;59:142-52

19)Piconi C, Maccauro G. Zirconia as a ceramic bio-material. Biomater 1999;20:1-25.

20) Tinschert J,  Zwez D,  Marx R, Anusavice KJ.Structural reliability of alumina-, feldspar, leucite-,  mica- and  zirconia-based ceramics.  J Dent2000;28:529-35.

21) Yildirim M, Fischer H, Marx R, Edelhoff D. In vivo fracture resistance of implant-supported all-ceramic restorations. The Journal of prosthetic dentistry. 2003;90 (4):325-31.

22) Lin WS, Harris BT, Zandinejad A, Martin WC, Morton D. Use of prefabricated titanium abutments and customized anatomic lithium disilicate structures for cement-retained implant restorations in the esthetic zone. J Prosthet Dent. 2014 Mar;111(3):181-5. doi: 10.1016/j.prosdent.2013.07.013. Epub 2013 Dec 18. PMID: 24360007.

23) Kewekordes T, Wille S, Kern M. Wear of polyetherketoneketones - Influence of titanium dioxide content and antagonistic material. Dent Mater. 2018 Mar;34(3):560-567. doi: 10.1016/j.dental.2017.12.009. Epub 2018 Jan 17. PMID: 29373134.

24) Elmougy A, Schiemann AM, Wood D, Pollington S, Martin N. Characterisation of machinable structural polymers in restorative dentistry. Dent Mater. 2018 Oct;34(10):1509-1517. doi: 10.1016/j.dental.2018.06.007. Epub 2018 Jul 20. PMID: 30037500.

25) Sakihara M, Taira Y, Sawase T. Effects of sulfuric and vinyl sulfonic acid etchants on bond strength of resin composite to polyetherketoneketone. Odontology. 2019 Apr;107(2):158-164. doi: 10.1007/s10266-018-0375-0. Epub 2018 Jul 5. PMID: 29978283.

26) Ma R, Tang T. Current strategies to improve the bioactivity of PEEK. International journal of molecular sciences. 2014;15(4):5426-45.

27) Liebermann A, Wimmer T, Schmidlin PR, Scherer H, Löffl er P, Roos M et al. Physicomechanical characterization of polyetheretherketone and current esthetic dental CAD/CAM polymers after aging in different storage media. The Journal of prosthetic dentistry. 2016;115(3):321-8

28) Schwitalla A, Muller WD. PEEK Dental Implants: A Review of the literature. J Oral Implant. 2013;39:743–749.

29) Behr M, Rosentritt M, Lang R, Handel G. Glass fiber‐reinforced abutments for dental implants. A pilot study. ClinOral Implant Res. 2001;12:174–178.

30) Donos N, Laurell L, Mardas N. Hierarchical decisions on teeth vs. implants in the periodontitis-susceptible patient: the modern dilemma. Periodontol 2000. 2012;59(1):89–110.

31) Lindhe J, Meyle J. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology; Group D of European Workshop on Periodontology. J Clin Periodontol. 2008;35(Suppl 8):282–5. doi: 10.1111/j.1600-051X.2008.01283.x. 

32) Zitzmann NU, Berglundh T. Definition and prevalence of peri-implant diseases. J Clin Periodontol. 2008;35(Suppl 8):286–91. doi: 10.1111/j.1600-051X.2008.01274.x.

33) Abrahamsson I, Berglundh T, Glantz PO, Lindhe J. The mucosal attachment at different abutments. An experimental study in dogs. J Clin Periodontol. 1998;25(9):721–7. doi: 10.1111/j.1600-051X.1998.tb02513.x. [PubMed] [CrossRef] [Google Scholar]

34)Welander M, Abrahamsson I, Berglundh T. The mucosal barrier at implant abutments of different materials. Clin Oral Implants Res. 2008;19(7):635–41. [PubMed] [Google Scholar]

35) Tallarico M, Canullo L, Caneva M, Özcan M . Microbial colonization at the implant-abutment interface and its possible influe nce on peri-implantitis: A s ystematic review and meta -analysis. J Prosthodont Res 2017;61:233–241.

36) Del Rey YC, Parize H, Pedrazzi V, Dos Reis AC, do Nascimento C. Clinical and In Situ Oral Biofilm Formation on Dental Implant Abutment Materials: A Systematic Review. Int J Oral Maxillofac Implants. 2022 Jul-Aug;37(4):639-652. doi: 10.11607/jomi.9352. PMID: 35904820.

37) Mishra SK, Chowdhary R, Kumari S. Microleakage at the Different Implant Abutment Interface: A Systematic Review. J Clin Diagn Res. 2017 Jun;11(6):ZE10-ZE15. doi: 10.7860/JCDR/2017/28951.10054. Epub 2017 Jun 1. PMID: 28764310; PMCID: PMC5535497.

38) De Pascalis F. Soft tissue integration with a hybrid abutment using the "one abutment-one time" therapeutic protocol: case series. Quintessence Int. 2022 Jun 20;53(7):590-596. doi: 10.3290/j.qi.b3082565. PMID: 35723484.

39) Wilson TG Jr. The positive relationship between excess cement and periimplant disease: a prospective clinical endoscopic study. J Periodontol 2009;80:1388-92.

40) Hsu KW, Liang CH, Peng YC, Hsiao CC. Comparison of the residual cement on custom computer-aided design and computer-aided manufacturing titanium and zirconia abutments: A preliminary cohort study. J Prosthet Dent. 2022 Oct;128(4):618-624. doi: 10.1016/j.prosdent.2021.06.013. Epub 2021 Sep 11. PMID: 34521506.

41) Alqahtani F, Flinton R. Postfatigue fracture resistance of modified prefabricated zirconia implant abutments. J Prosthet Dent. 2014 Aug;112(2):299-305. doi: 10.1016/j.prosdent.2013.08.023. Epub 2014 Jan 23. PMID: 24461943.

42) Coray R, Zeltner M, Özcan M. Fracture strength of implant abutments after fatigue testing: A systematic review and a meta-analysis. J Mech Behav Biomed Mater. 2016 Sep;62:333-346. doi: 10.1016/j.jmbbm.2016.05.011. Epub 2016 May 14. PMID: 27239815.

43) Foong JK, Judge RB, Palamara JE, Swain MV. Fracture resistance of titanium and zirconia abutments: an in vitro study. J Prosthet Dent. 2013 May;109(5):304-12. doi: 10.1016/S0022-3913(13)60306-6. PMID: 23684280.

44) Vechiato-Filho AJ, Pesqueira AA, De Souza GM, dos Santos DM, Pellizzer EP, Goiato MC. Are Zirconia Implant Abutments Safe and Predictable in Posterior Regions? A Systematic Review and Meta-Analysis. Int J Prosthodont. 2016 May-Jun;29(3):233-44. doi: 10.11607/ijp.4349. PMID: 27148982.

45) Ghazal-Maghras R, Vilaplana-Vivo J, Camacho-Alonso F, Martínez-Beneyto Y. Properties of polyetheretheretherketone (PEEK) implant abutments: A systematic review. J Clin Exp Dent. 2022 Apr 1;14(4):e349-e358. doi: 10.4317/jced.59466. PMID: 35419181; PMCID: PMC9000387

46) Türksayar AAD, Atsü SS. Fracture Resistance of Zirconia, Polyetheretherketone, and Polyetherketoneketone Implant Abutments After Aging. Int J Oral Maxillofac Implants. 2021 Mar-Apr;36(2):332-340. doi: 10.11607/jomi.9007. PMID: 33909724.

47) Ghodsi S, Tanous M, Hajimahmoudi M, Mahgoli H. Effect of aging on fracture resistance and torque loss of restorations supported by zirconia and polyetheretherketone abutments: An in vitro study. J Prosthet Dent. 2021 Mar;125(3):501.e1-501.e6. doi: 10.1016/j.prosdent.2020.10.013. Epub 2020 Nov 25. PMID: 33248675.

48) Elsayed A, Yazigi C, Kern M, Chaar MS. Mechanical behavior of nano-hybrid composite in comparison to lithium disilicate as posterior cement-retained implant-supported crowns restoring different abutments. Dent Mater. 2021 Aug;37(8):e435-e442. doi: 10.1016/j.dental.2021.03.015. Epub 2021 Apr 17. PMID: 33875247.

49) Vazouras K, Gholami H, Margvelashvili-Malament M, Kim YJ, Finkelman M, Weber HP. An Esthetic Evaluation of Different Abutment Materials in the Anterior Maxilla: A Randomized Controlled Clinical Trial Using a Crossover Design. J Prosthodont. 2022 Oct;31(8):673-680. doi: 10.1111/jopr.13520. Epub 2022 May 16. PMID: 35405771.

50) Diken Türksayar AA, Bulut AC, Atsü SS. Evaluation of the Effect of Different Abutment Materials on the Final Color of the Restoration After Aging: An In Vitro Study. Int J Prosthodont. 2022 Sep-Oct;35(5):676-683. doi: 10.11607/ijp.7653. PMID: 36511792.